Adding Document Summaries to Control Arena
Keshav Shenoy
One of the current focuses of AI Control research is finding new settings within which to examine the control problem. In this hackathon, we looked at defining a new AI control setting based around summarizing documents to mislead an overseer. We expect this problem to become more important as AI capabilities are more frequently used for synthesizibg and summarizing information, especially in AI safety research. As such, we worked on adding a new setting to the UKAISI Control Arena repository. The current state is a functional Inpect eval where redteams and blueteams could iterate on different strategies. However, the setting is not integrated into the Control Arena framework and only the most basic redteam & blueteam strategies have been implmeneted. Future work would move protocol and policy code into the existing Control Arena baseline, enable native pdf support, iterate further adversarially, and streamline AI calls which can be made asynchronously.
Reviewer's Comments
Reviewer's Comments



No reviews are available yet
Cite this work
@misc {
title={
@misc {
},
author={
Keshav Shenoy
},
date={
3/31/25
},
organization={Apart Research},
note={Research submission to the research sprint hosted by Apart.},
howpublished={https://apartresearch.com}
}
May 20, 2025
EscalAtion: Assessing Multi-Agent Risks in Military Contexts
Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.
Read More
Apr 28, 2025
The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence
We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.
Read More
Mar 31, 2025
Model Models: Simulating a Trusted Monitor
We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.
Read More
May 20, 2025
EscalAtion: Assessing Multi-Agent Risks in Military Contexts
Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.
Read More
Apr 28, 2025
The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence
We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.
Read More
May 20, 2025
EscalAtion: Assessing Multi-Agent Risks in Military Contexts
Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.
Read More
Apr 28, 2025
The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence
We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.
Read More
May 20, 2025
EscalAtion: Assessing Multi-Agent Risks in Military Contexts
Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.
Read More
Apr 28, 2025
The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence
We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.
Read More

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events