Nov 19, 2024

Advancing Global Governance for Frontier AI: A Proposal for an AISI-Led Working Group under the AI Safety Summit Series

Bengusu Ozcan

Details

Details

Arrow
Arrow
Arrow

Summary

The rapid development of frontier AI models, capable of transformative societal impacts, has been acknowledged as an urgent governance challenge since the first AI Safety Summit at Bletchley Park in 2023 [1]. The successor summit in Seoul in 2024 marked significant progress, with sixteen leading companies committing to publish safety frameworks by the upcoming AI Action Summit [2]. Despite this progress, existing efforts, such as the EU AI Act [3] and voluntary industry commitments, remain either regional in scope or insufficiently coordinated, lacking the international standards necessary to ensure the universal safety of frontier AI systems.

This policy recommendation addresses these gaps by proposing that the AI Safety Summit series host a working group led by the AI Safety Institutes (AISIs). AISIs provide the technical expertise and resources essential for this endeavor, ensuring that the working group can develop international standard responsible scaling policies for frontier AI models [4]. The group would establish risk thresholds, deployment protocols, and monitoring mechanisms, enabling iterative updates based on advancements in AI safety research and stakeholder feedback.

The Summit series, with its recurring cadence and global participation, is uniquely positioned to foster a truly international governance effort. By inviting all countries to participate, this initiative would ensure equitable representation and broad adoption of harmonized global standards. These efforts would mitigate risks such as societal disruption, security vulnerabilities, and misuse, while supporting responsible innovation. Implementing this proposal at the 2025 AI Action Summit in Paris would establish a pivotal precedent for globally coordinated AI governance.

Cite this work:

@misc {

title={

Advancing Global Governance for Frontier AI: A Proposal for an AISI-Led Working Group under the AI Safety Summit Series

},

author={

Bengusu Ozcan

},

date={

11/19/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Review

Review

Arrow
Arrow
Arrow

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

No reviews are available yet

Mar 24, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Mar 24, 2025

jaime project Title

bbb

Read More

Mar 25, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.