This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
ApartSprints
Women in AI Safety Hackathon
679781551b57b97e23660edd
Women in AI Safety Hackathon
March 10, 2025
Accepted at the 
679781551b57b97e23660edd
 research sprint on 

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

By 
Sofia Maria Lo Cicero Vaina, Anastasiia Ivanova, Liubov Yaronskaya
🏆 
4th place
3rd place
2nd place
1st place
 by peer review
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

This project is private