Jan 19, 2025

Building Bridges for AI Safety: Proposal for a Collaborative Platform for Alumni and Researchers

Aisha Gurung

Details

Arrow

Summary

The AI Safety Society is a centralized platform designed to support alumni of AI safety programs, such as SPAR, MATS, and ARENA, as well as independent researchers in the field. By providing access to resources, mentorship, collaboration opportunities, and shared infrastructure, the Society empowers its members to advance impactful work in AI safety. Through institutional and individual subscription models, the Society ensures accessibility across diverse geographies and demographics while fostering global collaboration. This initiative aims to address current gaps in resource access, collaboration, and mentorship, while also building a vibrant community that accelerates progress in the field of AI safety.

Cite this work:

@misc {

title={

Building Bridges for AI Safety: Proposal for a Collaborative Platform for Alumni and Researchers

},

author={

Aisha Gurung

},

date={

1/19/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Review

Arrow

Reviewer's Comments

Arrow

Recent Projects

Mar 24, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Mar 25, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.