Apr 7, 2025

Building Global Trust and Security: A Framework for AI-Driven Criminal Scoring in Immigration Systems

Bugrahan Namdar, James Hamraie, Michael Bolleddu

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow

Summary

The accelerating use of artificial intelligence (AI) in immigration and visa systems, especially for criminal history scoring, poses a critical global governance challenge. Without a multinational, privacy-preserving, and interoperable framework, AI-driven criminal scoring risks violating human rights, eroding international trust, and creating unequal, opaque immigration outcomes.

While banning such systems outright may hinder national security interests and technological progress, the absence of harmonized legal standards, privacy protocols, and oversight mechanisms could result in fragmented, unfair, and potentially discriminatory practices across

countries.

This policy brief recommends the creation of a legally binding multilateral treaty that establishes:

1. An International Oversight Framework: Including a Legal Design Commission, AI Engineers Working Group, and Legal Oversight Committee with dispute resolution powers modeled after the WTO.

2. A Three-Tiered Criminal Scoring System: Combining Domestic, International, and Comparative Crime Scores to ensure legal contextualization, fairness, and transparency in cross-border visa decisions.

3. Interoperable Data Standards and Privacy Protections: Using pseudonymization, encryption, access controls, and centralized auditing to safeguard sensitive information.

4. Training, Transparency, and Appeals Mechanisms: Mandating explainable AI, independent audits, and applicant rights to contest or appeal scores.

5. Strong Human Rights Commitments: Preventing the misuse of scores for surveillance or discrimination, while ensuring due process and anti-bias protections.

6. Integration with Existing Governance Models: Aligning with GDPR, the EU AI Act, OECD AI Principles, and INTERPOL protocols for regulatory coherence and legitimacy.

An implementation plan includes treaty drafting, early state adoption, and phased rollout of legal and technical structures within 12 months. By proactively establishing ethical and interoperable AI systems, the international community can protect human mobility rights while maintaining national and global security.

Without robust policy frameworks and international cooperation, such tools risk amplifying discrimination, violating privacy rights, and generating opaque, unaccountable decisions.

This policy brief proposes an international treaty-based or cooperative framework to govern the development, deployment, and oversight of these AI criminal scoring systems. The brief outlines

technical safeguards, human rights protections, and mechanisms for cross-border data sharing, transparency, and appeal. We advocate for an adaptive, treaty-backed governance framework with stakeholder input from national governments, legal experts, technologists, and civil society.

The aim is to balance security and mobility interests while preventing misuse of algorithmic

tools.

Cite this work:

@misc {

title={

Building Global Trust and Security: A Framework for AI-Driven Criminal Scoring in Immigration Systems

},

author={

Bugrahan Namdar, James Hamraie, Michael Bolleddu

},

date={

4/7/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

No reviews are available yet

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 24, 2025

CoTEP: A Multi-Modal Chain of Thought Evaluation Platform for the Next Generation of SOTA AI Models

As advanced state-of-the-art models like OpenAI's o-1 series, the upcoming o-3 family, Gemini 2.0 Flash Thinking and DeepSeek display increasingly sophisticated chain-of-thought (CoT) capabilities, our safety evaluations have not yet caught up. We propose building a platform that allows us to gather systematic evaluations of AI reasoning processes to create comprehensive safety benchmarks. Our Chain of Thought Evaluation Platform (CoTEP) will help establish standards for assessing AI reasoning and ensure development of more robust, trustworthy AI systems through industry and government collaboration.

Read More

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.