Building Global Trust and Security: A Framework for AI-Driven Criminal Scoring in Immigration Systems

Bugrahan Namdar, James Hamraie, Michael Bolleddu

The accelerating use of artificial intelligence (AI) in immigration and visa systems, especially for criminal history scoring, poses a critical global governance challenge. Without a multinational, privacy-preserving, and interoperable framework, AI-driven criminal scoring risks violating human rights, eroding international trust, and creating unequal, opaque immigration outcomes.

While banning such systems outright may hinder national security interests and technological progress, the absence of harmonized legal standards, privacy protocols, and oversight mechanisms could result in fragmented, unfair, and potentially discriminatory practices across

countries.

This policy brief recommends the creation of a legally binding multilateral treaty that establishes:

1. An International Oversight Framework: Including a Legal Design Commission, AI Engineers Working Group, and Legal Oversight Committee with dispute resolution powers modeled after the WTO.

2. A Three-Tiered Criminal Scoring System: Combining Domestic, International, and Comparative Crime Scores to ensure legal contextualization, fairness, and transparency in cross-border visa decisions.

3. Interoperable Data Standards and Privacy Protections: Using pseudonymization, encryption, access controls, and centralized auditing to safeguard sensitive information.

4. Training, Transparency, and Appeals Mechanisms: Mandating explainable AI, independent audits, and applicant rights to contest or appeal scores.

5. Strong Human Rights Commitments: Preventing the misuse of scores for surveillance or discrimination, while ensuring due process and anti-bias protections.

6. Integration with Existing Governance Models: Aligning with GDPR, the EU AI Act, OECD AI Principles, and INTERPOL protocols for regulatory coherence and legitimacy.

An implementation plan includes treaty drafting, early state adoption, and phased rollout of legal and technical structures within 12 months. By proactively establishing ethical and interoperable AI systems, the international community can protect human mobility rights while maintaining national and global security.

Without robust policy frameworks and international cooperation, such tools risk amplifying discrimination, violating privacy rights, and generating opaque, unaccountable decisions.

This policy brief proposes an international treaty-based or cooperative framework to govern the development, deployment, and oversight of these AI criminal scoring systems. The brief outlines

technical safeguards, human rights protections, and mechanisms for cross-border data sharing, transparency, and appeal. We advocate for an adaptive, treaty-backed governance framework with stakeholder input from national governments, legal experts, technologists, and civil society.

The aim is to balance security and mobility interests while preventing misuse of algorithmic

tools.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

No reviews are available yet

Cite this work

@misc {

title={

@misc {

},

author={

Bugrahan Namdar, James Hamraie, Michael Bolleddu

},

date={

4/7/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

Mar 31, 2025

Model Models: Simulating a Trusted Monitor

We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.