Nov 25, 2024

Classification on Latent Feature Activation for Detecting Adversarial Prompt Vulnerabilities

Hoang-Long Tran, Jack Kaunismaa, Edward Stevinson, Parv Mahajan, Oliver Clive-Griffin

We present a method leveraging Sparse Autoencoder (SAE)-derived feature activations to identify and mitigate adversarial prompt hijacking in large language models (LLMs). By training a logistic regression classifier on SAE-derived features, we accurately classify diverse adversarial prompts and distinguish between successful and unsuccessful attacks. Utilizing the Goodfire SDK with the LLaMA-8B model, we explored latent feature activations to gain insights into adversarial interactions. This approach highlights the potential of SAE activations for improving LLM safety by enabling automated auditing based on model internals. Future work will focus on scaling this method and exploring its integration as a control mechanism for mitigating attacks.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

This is addressing a really important practical problem. I liked their approach, am impressed with the results, and would be keen to see them build on this work!

This work covers an important problem and applies a sensible methodology. The performance of the results is impressive - I had to check in the code that the results were in fact on a test set. I'd be interested in seeing how often harmless prompts are misclassified though. Definitely worth extending further - these results are quite promising.

Cite this work

@misc {

title={

Classification on Latent Feature Activation for Detecting Adversarial Prompt Vulnerabilities

},

author={

Hoang-Long Tran, Jack Kaunismaa, Edward Stevinson, Parv Mahajan, Oliver Clive-Griffin

},

date={

11/25/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

View All

View All

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Fingerprinting All AI Cluster I/O Without Mutually Trusted Processors

We design and simulate a "border patrol" device for generating cryptographic evidence of data traffic entering and leaving an AI cluster, while eliminating the specific analog and steganographic side-channels that post-hoc verification can not close. The device eliminates the need for any mutually trusted logic, while still meeting the security needs of the prover and verifier.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.