Classification on Latent Feature Activation for Detecting Adversarial Prompt Vulnerabilities
Hoang-Long Tran, Jack Kaunismaa, Edward Stevinson, Parv Mahajan, Oliver Clive-Griffin
We present a method leveraging Sparse Autoencoder (SAE)-derived feature activations to identify and mitigate adversarial prompt hijacking in large language models (LLMs). By training a logistic regression classifier on SAE-derived features, we accurately classify diverse adversarial prompts and distinguish between successful and unsuccessful attacks. Utilizing the Goodfire SDK with the LLaMA-8B model, we explored latent feature activations to gain insights into adversarial interactions. This approach highlights the potential of SAE activations for improving LLM safety by enabling automated auditing based on model internals. Future work will focus on scaling this method and exploring its integration as a control mechanism for mitigating attacks.
Reviewer's Comments
Reviewer's Comments



Liv Gorton
This is addressing a really important practical problem. I liked their approach, am impressed with the results, and would be keen to see them build on this work!
Tom McGrath
This work covers an important problem and applies a sensible methodology. The performance of the results is impressive - I had to check in the code that the results were in fact on a test set. I'd be interested in seeing how often harmless prompts are misclassified though. Definitely worth extending further - these results are quite promising.
Cite this work
@misc {
title={
Classification on Latent Feature Activation for Detecting Adversarial Prompt Vulnerabilities
},
author={
Hoang-Long Tran, Jack Kaunismaa, Edward Stevinson, Parv Mahajan, Oliver Clive-Griffin
},
date={
11/25/24
},
organization={Apart Research},
note={Research submission to the research sprint hosted by Apart.},
howpublished={https://apartresearch.com}
}
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Momentum–Point-Perplexity Mechanics in Large Language Models
This work analyzes the hidden states of twenty different open-source transformer language models, ranging from small to medium size and covering five major architectures. The key discovery is that these models show signs of "energy conservation" during inference—meaning a certain measure combining changes in hidden states and token unpredictability stays almost constant as the model processes text.
The authors developed a new framework inspired by physics to jointly analyze how hidden states and prediction confidence evolve over time. They propose that transformers' behavior can be understood as following certain mechanical principles, much like how physical systems follow rules like conservation of energy.
Their experiments show that this conserved quantity varies very little between tokens, especially in untrained (random-weight) models, where it's extremely stable. In pre-trained models, the average energy drops more due to training, but there are larger relative fluctuations from token to token.
They also introduce a new method, based on this framework, for controlling transformer outputs by "steering" the hidden states. This method achieves good results—producing completions rated as higher in semantic quality, while still maintaining the same kind of energy stability.
Overall, the findings suggest that viewing transformer models through the lens of physical mechanics gives new, principled ways to interpret and control their behavior. It also highlights a key difference: random models behave more like balanced systems, while trained models make quicker, more decisive state changes at the cost of less precise energy conservation.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events