Classification on Latent Feature Activation for Detecting Adversarial Prompt Vulnerabilities

Hoang-Long Tran, Jack Kaunismaa, Edward Stevinson, Parv Mahajan, Oliver Clive-Griffin

We present a method leveraging Sparse Autoencoder (SAE)-derived feature activations to identify and mitigate adversarial prompt hijacking in large language models (LLMs). By training a logistic regression classifier on SAE-derived features, we accurately classify diverse adversarial prompts and distinguish between successful and unsuccessful attacks. Utilizing the Goodfire SDK with the LLaMA-8B model, we explored latent feature activations to gain insights into adversarial interactions. This approach highlights the potential of SAE activations for improving LLM safety by enabling automated auditing based on model internals. Future work will focus on scaling this method and exploring its integration as a control mechanism for mitigating attacks.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

Liv Gorton

This is addressing a really important practical problem. I liked their approach, am impressed with the results, and would be keen to see them build on this work!

Tom McGrath

This work covers an important problem and applies a sensible methodology. The performance of the results is impressive - I had to check in the code that the results were in fact on a test set. I'd be interested in seeing how often harmless prompts are misclassified though. Definitely worth extending further - these results are quite promising.

Cite this work

@misc {

title={

@misc {

},

author={

Hoang-Long Tran, Jack Kaunismaa, Edward Stevinson, Parv Mahajan, Oliver Clive-Griffin

},

date={

11/25/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

Mar 31, 2025

Model Models: Simulating a Trusted Monitor

We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.