Dark Patterns and Emergent Alignment-Faking
Isabel Dahlgren, Gaullaume Martres, Robert Müller, Simon Storf
Are bad traits in models correlated, as suggested by recent work on emergent misalignment? To investigate this, we fine-tune models on a subset of “dark patterns”, such as anthropomorphization and sycophancy, and then evaluate their behavior on other dark patterns such as scheming and alignment faking. We find that the limited fine-tuning we do is enough to induce other problematic tendencies in the model. This effect is particularly strong in the case of alignment faking which we almost never detect in our base models but is very easy to induce in our fine-tuned models.
Reviewer's Comments
Reviewer's Comments



Esben Kran
This is very very good. It expands on multiple important directions at once: 1) The measurement of RL-derived instrumental convergence, 2) downstream brand bias, 3) integrates other patterns into the Orthogonal Alignment / Dark Patterns suite of tests, and 4) actually tests the propensities underlying the dark patterns. The results show validation of the performance of the benchmark as well, since we wouldn't expect egregious examples of brand favoritism YET (since we just now see brand bias be a major issue) and we see that agency in general increases when you train for these patterns that *indicate* agency in various formats.
Really great project and great analysis.
Cite this work
@misc {
title={
Dark Patterns and Emergent Alignment-Faking
},
author={
Isabel Dahlgren, Gaullaume Martres, Robert Müller, Simon Storf
},
date={
4/7/25
},
organization={Apart Research},
note={Research submission to the research sprint hosted by Apart.},
howpublished={https://apartresearch.com}
}
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Momentum–Point-Perplexity Mechanics in Large Language Models
This work analyzes the hidden states of twenty different open-source transformer language models, ranging from small to medium size and covering five major architectures. The key discovery is that these models show signs of "energy conservation" during inference—meaning a certain measure combining changes in hidden states and token unpredictability stays almost constant as the model processes text.
The authors developed a new framework inspired by physics to jointly analyze how hidden states and prediction confidence evolve over time. They propose that transformers' behavior can be understood as following certain mechanical principles, much like how physical systems follow rules like conservation of energy.
Their experiments show that this conserved quantity varies very little between tokens, especially in untrained (random-weight) models, where it's extremely stable. In pre-trained models, the average energy drops more due to training, but there are larger relative fluctuations from token to token.
They also introduce a new method, based on this framework, for controlling transformer outputs by "steering" the hidden states. This method achieves good results—producing completions rated as higher in semantic quality, while still maintaining the same kind of energy stability.
Overall, the findings suggest that viewing transformer models through the lens of physical mechanics gives new, principled ways to interpret and control their behavior. It also highlights a key difference: random models behave more like balanced systems, while trained models make quicker, more decisive state changes at the cost of less precise energy conservation.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events