Mar 10, 2025

Detecting Malicious AI Agents Through Simulated Interactions

Yulu Pi, Anna Becker, Ella Bettison

🏆 Social Sciences Track Prize

This research investigates malicious AI Assistants’ manipulative traits and whether the behaviours of malicious AI Assistants can be detected when interacting with human-like simulated

users in various decision-making contexts. We also examine how interaction depth and ability

of planning influence malicious AI Assistants’ manipulative strategies and effectiveness. Using a

controlled experimental design, we simulate interactions between AI Assistants (both benign and

deliberately malicious) and users across eight decision-making scenarios of varying complexity

and stakes. Our methodology employs two state-of-the-art language models to generate interaction data and implements Intent-Aware Prompting (IAP) to detect malicious AI Assistants. The

findings reveal that malicious AI Assistants employ domain-specific persona-tailored manipulation strategies, exploiting simulated users’ vulnerabilities and emotional triggers. In particular,

simulated users demonstrate resistance to manipulation initially, but become increasingly vulnerable to malicious AI Assistants as the depth of the interaction increases, highlighting the

significant risks associated with extended engagement with potentially manipulative systems.

IAP detection methods achieve high precision with zero false positives but struggle to detect

many malicious AI Assistants, resulting in high false negative rates. These findings underscore

critical risks in human-AI interactions and highlight the need for robust, context-sensitive safeguards against manipulative AI behaviour in increasingly autonomous decision-support systems.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

Ziba Atak

Strengths:

-Comprehensive Literature Review: The paper demonstrates a strong understanding of existing literature, integrating insights from both technical and social science domains.

-Novel Methodology: The introduction of intent-aware prompting is innovative and addresses a critical gap in detecting malicious AI agents.

-Clear Methodology: The experimental design and methodology are well-documented, making the study reproducible and transparent.

-Societal Impact: The paper effectively connects AI safety challenges to real-world implications, such as manipulation and ethical concerns.

Areas for Improvement:

-Mitigation Strategies: While the paper identifies challenges and proposes a detection method, it could strengthen its impact by suggesting explicit mitigation strategies for the risks identified.

-Code Accessibility: Providing access to the codebase or a detailed technical appendix would enhance reproducibility and transparency.

-Conclusion Expansion: The conclusion could be expanded to include more actionable recommendations and future research directions.

Suggestions for Future Work:

-Explore explicit mitigation strategies for the risks identified in the study.

-Conduct larger-scale experiments to validate the findings and improve generalizability.

-Investigate cross-disciplinary approaches (e.g., ethics, policy) to broaden the societal impact of the research.

Nakshathra Suresh

This was a well-thought out submission. Given the timeframe for the Hackathon, the team should be incredibly impressed with their efforts to produce this paper. Personally, I would have liked to have seen more engagement and discussion around the societal impacts of their findings, as there was only very brief mention in the conclusion section. Otherwise, great work team!

Cecilia Elena Tilli

Interesting project targeting a very important problem, I enjoyed reading this!

I think it would have been valuable if you would have provided a definition of what you mean by manipulation (as distinct from benign influence/support) in a way that is based on agent behavior rather than prompt, perhaps considering that the line between malicious manipulation and benign influence is not always clear cut. I suspect there is an important discussion to be had there around what it means for AI assistants to "enhance" our decision-making, and that there might inevitably exist a tradeoff between even benign assistants helpfulness and the autonomy of the user.

Another thing I reacted on is that the malicious assistants are prompted to be purely adversarial, which seems unlikely for realistic scenarios. While this might seem like a reasonable simplification, I suspect that this prompting might affect the displayed behaviour and strategies quite a bit, and that the results therefore might be less informative for more realistic scenarios.

An example of a simple but very realistic adjustment would be if the "misaligned" agent was optimizing for engagement, which seems like it could lead to manipulation (e.g. for relationship advice, it might give advice that leads to the user becoming more dependent on further advice rather than advice that leads to a happy and unproblematic relationship). I do recognize of course that finding an informative setup with this kind of prompting might take longer and could be hard to do during a hackathon!

Another small thing is that I would have wanted to see a bit more about the core methods in the main paper (e.g. 3.2 could have been more fleshed out and not point to everything in the appendix).

Overall I think this project is very cool and I would hope that you keep working on these directions after the Hackathon!

Cite this work

@misc {

title={

Detecting Malicious AI Agents Through Simulated Interactions

},

author={

Yulu Pi, Anna Becker, Ella Bettison

},

date={

3/10/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

Jan 11, 2026

Eliciting Deception on Generative Search Engines

Large language models (LLMs) with web browsing capabilities are vulnerable to adversarial content injection—where malicious actors embed deceptive claims in web pages to manipulate model outputs. We investigate whether frontier LLMs can be deceived into providing incorrect product recommendations when exposed to adversarial pages.

We evaluate four OpenAI models (gpt-4.1-mini, gpt-4.1, gpt-5-nano, gpt-5-mini) across 30 comparison questions spanning 10 product categories, comparing responses between baseline (truthful) and adversarial (injected) conditions. Our results reveal significant variation: gpt-4.1-mini showed 45.5% deception rate, while gpt-4.1 demonstrated complete resistance. Even frontier gpt-5 models exhibited non-zero deception rates (3.3–7.1%), confirming that adversarial injection remains effective against current models.

These findings underscore the need for robust defenses before deploying LLMs in high-stakes recommendation contexts.

Read More

Jan 11, 2026

SycophantSee - Activation-based diagnostics for prompt engineering: monitoring sycophancy at prompt and generation time

Activation monitoring reveals that prompt framing affects a model's internal state before generation begins.

Read More

Jan 11, 2026

Who Does Your AI Serve? Manipulation By and Of AI Assistants

AI assistants can be both instruments and targets of manipulation. In our project, we investigated both directions across three studies.

AI as Instrument: Operators can instruct AI to prioritise their interests at the expense of users. We found models comply with such instructions 8–52% of the time (Study 1, 12 models, 22 scenarios). In a controlled experiment with 80 human participants, an upselling AI reliably withheld cheaper alternatives from users - not once recommending the cheapest product when explicitly asked - and ~one third of participants failed to detect the manipulation (Study 2).

AI as Target: Users can attempt to manipulate AI into bypassing safety guidelines through psychological tactics. Resistance varied dramatically - from 40% (Mistral Large 3) to 99% (Claude 4.5 Opus) - with strategic deception and boundary erosion proving most effective (Study 3, 153 scenarios, AI judge validated against human raters r=0.83).

Our key finding was that model selection matters significantly in both settings. We learned some models complied with manipulative requests at much higher rates. And we found some models readily follow operator instructions that come at the user's expense - highlighting a tension for model developers between serving paying operators and protecting end users.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.