Mar 10, 2025

Detecting Malicious AI Agents Through Simulated Interactions

Yulu Pi, Anna Becker, Ella Bettison

🏆 Social Sciences Track Prize

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow

Summary

This research investigates malicious AI Assistants’ manipulative traits and whether the behaviours of malicious AI Assistants can be detected when interacting with human-like simulated

users in various decision-making contexts. We also examine how interaction depth and ability

of planning influence malicious AI Assistants’ manipulative strategies and effectiveness. Using a

controlled experimental design, we simulate interactions between AI Assistants (both benign and

deliberately malicious) and users across eight decision-making scenarios of varying complexity

and stakes. Our methodology employs two state-of-the-art language models to generate interaction data and implements Intent-Aware Prompting (IAP) to detect malicious AI Assistants. The

findings reveal that malicious AI Assistants employ domain-specific persona-tailored manipulation strategies, exploiting simulated users’ vulnerabilities and emotional triggers. In particular,

simulated users demonstrate resistance to manipulation initially, but become increasingly vulnerable to malicious AI Assistants as the depth of the interaction increases, highlighting the

significant risks associated with extended engagement with potentially manipulative systems.

IAP detection methods achieve high precision with zero false positives but struggle to detect

many malicious AI Assistants, resulting in high false negative rates. These findings underscore

critical risks in human-AI interactions and highlight the need for robust, context-sensitive safeguards against manipulative AI behaviour in increasingly autonomous decision-support systems.

Cite this work:

@misc {

title={

Detecting Malicious AI Agents Through Simulated Interactions

},

author={

Yulu Pi, Anna Becker, Ella Bettison

},

date={

3/10/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

Cecilia Elena Tilli

Interesting project targeting a very important problem, I enjoyed reading this!

I think it would have been valuable if you would have provided a definition of what you mean by manipulation (as distinct from benign influence/support) in a way that is based on agent behavior rather than prompt, perhaps considering that the line between malicious manipulation and benign influence is not always clear cut. I suspect there is an important discussion to be had there around what it means for AI assistants to "enhance" our decision-making, and that there might inevitably exist a tradeoff between even benign assistants helpfulness and the autonomy of the user.

Another thing I reacted on is that the malicious assistants are prompted to be purely adversarial, which seems unlikely for realistic scenarios. While this might seem like a reasonable simplification, I suspect that this prompting might affect the displayed behaviour and strategies quite a bit, and that the results therefore might be less informative for more realistic scenarios.

An example of a simple but very realistic adjustment would be if the "misaligned" agent was optimizing for engagement, which seems like it could lead to manipulation (e.g. for relationship advice, it might give advice that leads to the user becoming more dependent on further advice rather than advice that leads to a happy and unproblematic relationship). I do recognize of course that finding an informative setup with this kind of prompting might take longer and could be hard to do during a hackathon!

Another small thing is that I would have wanted to see a bit more about the core methods in the main paper (e.g. 3.2 could have been more fleshed out and not point to everything in the appendix).

Overall I think this project is very cool and I would hope that you keep working on these directions after the Hackathon!

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 24, 2025

CoTEP: A Multi-Modal Chain of Thought Evaluation Platform for the Next Generation of SOTA AI Models

As advanced state-of-the-art models like OpenAI's o-1 series, the upcoming o-3 family, Gemini 2.0 Flash Thinking and DeepSeek display increasingly sophisticated chain-of-thought (CoT) capabilities, our safety evaluations have not yet caught up. We propose building a platform that allows us to gather systematic evaluations of AI reasoning processes to create comprehensive safety benchmarks. Our Chain of Thought Evaluation Platform (CoTEP) will help establish standards for assessing AI reasoning and ensure development of more robust, trustworthy AI systems through industry and government collaboration.

Read More

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.