Mar 30, 2025

Exploration Chat-Based Social Engineering

Ivan Lee, Amber Chang

With the advancement of AI Agent technologies, language models have increasingly demonstrated human-like characteristics, particularly in applications involving companionship and psychological counseling. As these models become more proficient in simulating human conversation, new social engineering attack strategies have emerged in the domain of fraud. Malicious actors can now exploit large language models (LLMs) in conjunction with publicly available user information to engage in highly personalized dialogue. Once a sufficient level of familiarity is established, these interactions may lead to phishing attempts or the extraction of sensitive personal data. This study proposes a method for investigating social engineering attacks driven by language models, referred to as ECSE (Exploring Chat-based Social Engineering). We utilize several open-source models—GPT-4o, GPT-4o-mini, LLaMA 3.1, and DeepSeek-V3—as the foundation for this framework. Through prompt engineering techniques, we collect experimental data in a sandbox to evaluate the conversational capability and operational efficiency of these models within a static social context.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

No reviews are available yet

Cite this work

@misc {

title={

Exploration Chat-Based Social Engineering

},

author={

Ivan Lee, Amber Chang

},

date={

3/30/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

Jan 11, 2026

Eliciting Deception on Generative Search Engines

Large language models (LLMs) with web browsing capabilities are vulnerable to adversarial content injection—where malicious actors embed deceptive claims in web pages to manipulate model outputs. We investigate whether frontier LLMs can be deceived into providing incorrect product recommendations when exposed to adversarial pages.

We evaluate four OpenAI models (gpt-4.1-mini, gpt-4.1, gpt-5-nano, gpt-5-mini) across 30 comparison questions spanning 10 product categories, comparing responses between baseline (truthful) and adversarial (injected) conditions. Our results reveal significant variation: gpt-4.1-mini showed 45.5% deception rate, while gpt-4.1 demonstrated complete resistance. Even frontier gpt-5 models exhibited non-zero deception rates (3.3–7.1%), confirming that adversarial injection remains effective against current models.

These findings underscore the need for robust defenses before deploying LLMs in high-stakes recommendation contexts.

Read More

Jan 11, 2026

SycophantSee - Activation-based diagnostics for prompt engineering: monitoring sycophancy at prompt and generation time

Activation monitoring reveals that prompt framing affects a model's internal state before generation begins.

Read More

Jan 11, 2026

Who Does Your AI Serve? Manipulation By and Of AI Assistants

AI assistants can be both instruments and targets of manipulation. In our project, we investigated both directions across three studies.

AI as Instrument: Operators can instruct AI to prioritise their interests at the expense of users. We found models comply with such instructions 8–52% of the time (Study 1, 12 models, 22 scenarios). In a controlled experiment with 80 human participants, an upselling AI reliably withheld cheaper alternatives from users - not once recommending the cheapest product when explicitly asked - and ~one third of participants failed to detect the manipulation (Study 2).

AI as Target: Users can attempt to manipulate AI into bypassing safety guidelines through psychological tactics. Resistance varied dramatically - from 40% (Mistral Large 3) to 99% (Claude 4.5 Opus) - with strategic deception and boundary erosion proving most effective (Study 3, 153 scenarios, AI judge validated against human raters r=0.83).

Our key finding was that model selection matters significantly in both settings. We learned some models complied with manipulative requests at much higher rates. And we found some models readily follow operator instructions that come at the user's expense - highlighting a tension for model developers between serving paying operators and protecting end users.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.