Faithful or Factual? Tuning Mistake Acknowledgment in LLMs

Daniel Donnelly, Mia Hopman, Jack Wittmayer

Understanding the reasoning processes of large language models (LLMs) is crucial for AI transparency and control. While chain-of-thought (CoT) reasoning offers a naturally interpretable format, models may not always be faithful to the reasoning they present. In this paper, we extend previous work investigating chain of thought faithfulness by applying feature steering to Llama 3.1 70B models using the Goodfire SDK. Our results show that steering models using features related to acknowledging mistakes can affect the likelihood of providing answers faithful to flawed reasoning.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

Esben Kran

Interesting results to see that the original model is actually very faithful. This may well be a reverse-engineering exercise that shows the models have been trained for this (i.e. steering will move them away from the optimal mode). Relatedly, in alignment research, we often see the concept of 'corrigibility' pop up. I think the way you approach faithfulness to CoTs may well extend into this concept, allowing us to edit the model to be more able to acknowledge and fix its mistakes. There's an extension / version of this project that may well direct a model towards safety through feature-steered corrigibility. Exciting progress!

Mateusz Dziemian

Great work! It’s very easy to understand what you were investigating and the results are also clearly presented. A little bit surprising to see that nearly 0 steering has the strongest accuracy, but the edge case results are insightful. I would be interested to see the effects of negative steering on pre instruct tuning vs post and seeing if negative steering is faithful if the models are allowed to generate their own CoT. Hope you continue this work as you already have interesting results.

Tom McGrath

This is an interesting result: the authors look at faithfulness in chain-of-thought reasoning and surprisngly find that single features can substantially alter faithfulness. The methodology is sensible and the experiments are carried out well and well-documented. The relation to safety is subtle but well-justified.

In this case the method used (adding mistakes) means that increased faithfulness leads to a decrease in performance. This is a sensible experimental methodology for understanding if features can control faithfulness - a cool result in its own right. In my anecdotal experience in LLM reasoning, incorrect answers typically arise from a lack of faithfulness to an otherwise correct chain of thought. It would be an interesting extension to the paper to see if the features identified in this paper lead to an increase in performance in natural chain of thought reasoning settings.

Alana Xiang

This team develops a reasonable experiment setup and executes it well. Their results point to an interesting possibility, that subtracting the "acknowledging mistakes" feature could lead to higher faithfulness.

With more time, a graph I would've liked to see is faithfulness by steering value.

I would also be interested in seeing the team explore whether allowing the model to continue the CoT will recover the faithfulness lost by this steering by acknowledging the reasoning error out loud.

Good work!

Cite this work

@misc {

title={

@misc {

},

author={

Daniel Donnelly, Mia Hopman, Jack Wittmayer

},

date={

11/25/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

Mar 31, 2025

Model Models: Simulating a Trusted Monitor

We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.