Honeypotting Deceptive AI models to share their misinformation goals

Carl John Vinas, Adam NewGas, James Pentland

As large-scale AI models grow increasingly sophisticated, the possibility of these models engaging in covert or manipulative behavior poses significant challenges for alignment and control. In this work, we present a novel approach based on a “honeypot AI” designed to trick a potentially deceptive AI (the “Red Team Agent”) into revealing its hidden motives. Our honeypot AI (the “Blue Team Agent”) pretends to be an everyday human user, employing carefully crafted prompts and human-like inconsistencies to bait the Deceptive AI into spreading misinformation. We do this through the usual Red Team–Blue Team setup.

For all 60 conversations, our honeypot AI was able to capture the deceptive AI to be being spread misinformation, and for 70 percent of these conversations, the Deceptive AI was thinking it was talking to a human.

Our results weakly suggest that we can make honeypot AIs that trick deceptive AI models, thinking they are talking to a human and no longer being monitored and that how these AI models think they are talking to a human is mainly when the one they are talking to display emotional intelligence and more human-like manner of speech.

We highly suggest exploring if these results remains the same for fine tuned deceptive AI and Honeypot AI models, checking the Chain of thought of these models to better understand if this is their usual behavior and if they are correctly following their given system prompts.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

No reviews are available yet

Cite this work

@misc {

title={

@misc {

},

author={

Carl John Vinas, Adam NewGas, James Pentland

},

date={

3/31/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

Mar 31, 2025

Model Models: Simulating a Trusted Monitor

We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.