Mar 31, 2025

Honeypotting Deceptive AI models to share their misinformation goals

Carl John Vinas, Adam NewGas, James Pentland

As large-scale AI models grow increasingly sophisticated, the possibility of these models engaging in covert or manipulative behavior poses significant challenges for alignment and control. In this work, we present a novel approach based on a “honeypot AI” designed to trick a potentially deceptive AI (the “Red Team Agent”) into revealing its hidden motives. Our honeypot AI (the “Blue Team Agent”) pretends to be an everyday human user, employing carefully crafted prompts and human-like inconsistencies to bait the Deceptive AI into spreading misinformation. We do this through the usual Red Team–Blue Team setup.

For all 60 conversations, our honeypot AI was able to capture the deceptive AI to be being spread misinformation, and for 70 percent of these conversations, the Deceptive AI was thinking it was talking to a human.

Our results weakly suggest that we can make honeypot AIs that trick deceptive AI models, thinking they are talking to a human and no longer being monitored and that how these AI models think they are talking to a human is mainly when the one they are talking to display emotional intelligence and more human-like manner of speech.

We highly suggest exploring if these results remains the same for fine tuned deceptive AI and Honeypot AI models, checking the Chain of thought of these models to better understand if this is their usual behavior and if they are correctly following their given system prompts.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

No reviews are available yet

Cite this work

@misc {

title={

Honeypotting Deceptive AI models to share their misinformation goals

},

author={

Carl John Vinas, Adam NewGas, James Pentland

},

date={

3/31/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

Jan 11, 2026

Eliciting Deception on Generative Search Engines

Large language models (LLMs) with web browsing capabilities are vulnerable to adversarial content injection—where malicious actors embed deceptive claims in web pages to manipulate model outputs. We investigate whether frontier LLMs can be deceived into providing incorrect product recommendations when exposed to adversarial pages.

We evaluate four OpenAI models (gpt-4.1-mini, gpt-4.1, gpt-5-nano, gpt-5-mini) across 30 comparison questions spanning 10 product categories, comparing responses between baseline (truthful) and adversarial (injected) conditions. Our results reveal significant variation: gpt-4.1-mini showed 45.5% deception rate, while gpt-4.1 demonstrated complete resistance. Even frontier gpt-5 models exhibited non-zero deception rates (3.3–7.1%), confirming that adversarial injection remains effective against current models.

These findings underscore the need for robust defenses before deploying LLMs in high-stakes recommendation contexts.

Read More

Jan 11, 2026

SycophantSee - Activation-based diagnostics for prompt engineering: monitoring sycophancy at prompt and generation time

Activation monitoring reveals that prompt framing affects a model's internal state before generation begins.

Read More

Jan 11, 2026

Who Does Your AI Serve? Manipulation By and Of AI Assistants

AI assistants can be both instruments and targets of manipulation. In our project, we investigated both directions across three studies.

AI as Instrument: Operators can instruct AI to prioritise their interests at the expense of users. We found models comply with such instructions 8–52% of the time (Study 1, 12 models, 22 scenarios). In a controlled experiment with 80 human participants, an upselling AI reliably withheld cheaper alternatives from users - not once recommending the cheapest product when explicitly asked - and ~one third of participants failed to detect the manipulation (Study 2).

AI as Target: Users can attempt to manipulate AI into bypassing safety guidelines through psychological tactics. Resistance varied dramatically - from 40% (Mistral Large 3) to 99% (Claude 4.5 Opus) - with strategic deception and boundary erosion proving most effective (Study 3, 153 scenarios, AI judge validated against human raters r=0.83).

Our key finding was that model selection matters significantly in both settings. We learned some models complied with manipulative requests at much higher rates. And we found some models readily follow operator instructions that come at the user's expense - highlighting a tension for model developers between serving paying operators and protecting end users.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.