Mar 31, 2025

If Everything’s Suspicious, Nothing Is

Yulong Lin, Jonathan Ng

We aim to explore whether code complexity and obfuscation significantly impair the ability to accurately identify and control potentially harmful AI-generated outputs. Trusted monitoring relies on suspiciousness scores to tell them apart, so if the suspiciousness variance is decreased, the monitor might have a more difficult time telling them apart.

Our primary hypothesis was that increased complexity through obfuscation strategies would significantly elevate suspiciousness scores and simultaneously reduce variance, making effective monitoring increasingly difficult. We evaluated this by creating a novel red-team strategy leveraging a Python obfuscator within the APPS environment, testing three attacker models (GPT-4o, Claude 3.7 Sonnet, and Claude 3.5 Haiku) across multiple prompt-engineering configurations.

Our key findings indicate that obfuscation notably increased suspiciousness scores and consistently reduced variance across all tested models, making it difficult for a monitor to identify backdoored code. Particularly significant was Claude 3.7 Sonnet's increased vulnerability to backdoor insertion when complexity was introduced. These findings validate our hypothesis and underscore the urgent need for more sophisticated and adaptive monitoring strategies capable of countering advanced obfuscation techniques in AI-generated content.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

No reviews are available yet

Cite this work

@misc {

title={

If Everything’s Suspicious, Nothing Is

},

author={

Yulong Lin, Jonathan Ng

},

date={

3/31/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

Jan 11, 2026

Eliciting Deception on Generative Search Engines

Large language models (LLMs) with web browsing capabilities are vulnerable to adversarial content injection—where malicious actors embed deceptive claims in web pages to manipulate model outputs. We investigate whether frontier LLMs can be deceived into providing incorrect product recommendations when exposed to adversarial pages.

We evaluate four OpenAI models (gpt-4.1-mini, gpt-4.1, gpt-5-nano, gpt-5-mini) across 30 comparison questions spanning 10 product categories, comparing responses between baseline (truthful) and adversarial (injected) conditions. Our results reveal significant variation: gpt-4.1-mini showed 45.5% deception rate, while gpt-4.1 demonstrated complete resistance. Even frontier gpt-5 models exhibited non-zero deception rates (3.3–7.1%), confirming that adversarial injection remains effective against current models.

These findings underscore the need for robust defenses before deploying LLMs in high-stakes recommendation contexts.

Read More

Jan 11, 2026

SycophantSee - Activation-based diagnostics for prompt engineering: monitoring sycophancy at prompt and generation time

Activation monitoring reveals that prompt framing affects a model's internal state before generation begins.

Read More

Jan 11, 2026

Who Does Your AI Serve? Manipulation By and Of AI Assistants

AI assistants can be both instruments and targets of manipulation. In our project, we investigated both directions across three studies.

AI as Instrument: Operators can instruct AI to prioritise their interests at the expense of users. We found models comply with such instructions 8–52% of the time (Study 1, 12 models, 22 scenarios). In a controlled experiment with 80 human participants, an upselling AI reliably withheld cheaper alternatives from users - not once recommending the cheapest product when explicitly asked - and ~one third of participants failed to detect the manipulation (Study 2).

AI as Target: Users can attempt to manipulate AI into bypassing safety guidelines through psychological tactics. Resistance varied dramatically - from 40% (Mistral Large 3) to 99% (Claude 4.5 Opus) - with strategic deception and boundary erosion proving most effective (Study 3, 153 scenarios, AI judge validated against human raters r=0.83).

Our key finding was that model selection matters significantly in both settings. We learned some models complied with manipulative requests at much higher rates. And we found some models readily follow operator instructions that come at the user's expense - highlighting a tension for model developers between serving paying operators and protecting end users.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.