Judge using SAE Features

Dhruv Yadav

The key idea of this project was to explore model judgement using

Sparse Autoencoder (SAE) features for mathematical reasoning

tasks involving addition, multiplication, and subtraction operations.

We compared this performance against basic Chain-of-Thought

(CoT) based judgement using routing algorithms deployed by the

Martian SDK.

Our work addresses the Judge Model Development track by

developing a SAE feature-based routing system that achieves

comparable performance to traditional CoT approaches while

providing enhanced interpretability. We demonstrate that SAE

feature analysis can effectively guide model selection for

mathematical reasoning tasks, with our system showing 91%

routing accuracy compared to 98% for traditional CoT methods.

Critically, our SAE-based approach identified 7% of cases where

both models were inadequate based on feature analysis - insights

invisible to traditional routing methods.

This work advances mechanistic interpretability of routing systems

by providing transparent, feature-level explanations for routing

decisions, enabling users to understand why specific models are

chosen for a sample problem of mathematical operations.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

Philip Quirke

Thank you for your submission. This is an interesting paper with some good results.

As you say SAEs give some insights, but have limitations and are costly. It’s hard to know how much to rely on SAE features being accurate representations of the model’s capability.

Curt Tigges

I liked this project a lot and think it has substantial potential for further development (I realize the hackathon was short). In particular, this expands on the autointerp methods that already exist to get good judge results.

I'd be interested to see further evolutions of this that use attribution graphs (once transcoders are trained for the relevant models). However, when implementing this one must be careful to ensure that the autointerp results (for the individual SAE features) are of sufficiently high quality. Some are vague and underspecified.

Narmeen

Constructive critique:

Strength:

Problem is well defined: can we route based on activating features in a prompt that is an interpretable approach to routing

The experiments are properly designed and executed on!

Shows that SAE feature matching allows a more diverse routing strategy and also that there are cases where neither models are aligned on the task (Cool insight and it relates to fallback mechanisms in routing that are important to report especially in a product setting where a customer would prefer a warning rather than incorrect answers)

Weakness:

Comparing the SAE feature detection approach to simpler baselines would make this investigation complete: e.g, Train linear probes by extracting hidden activations from a chosen model layer for each math prompt, labeling them with interpretable task types (e.g., addition, subtraction), and fitting a logistic regression classifier to predict these labels for use in routing decisions

Strong assumption but fair for the hackathon: For each input query, they assume that the features it would activate in the small (distilled) model for which Neuronpedia has SAEs available for are representative of the reasoning traits that would be activated in the full model.

SAEs are costly to obtain if they are not already available so including that cost in routing makes it a bad routing decision.

Cite this work

@misc {

title={

@misc {

},

author={

Dhruv Yadav

},

date={

6/1/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

Mar 31, 2025

Model Models: Simulating a Trusted Monitor

We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.