Nov 25, 2024

Let LLM Agents Perform LLM Surgery

Sharat Jacob Jacob

This project aimed to create and utilize LLM agents that could perform various mechanistic interventions on other LLMs. A few experiments were conducted ranging from an agent unsteering a mechanistically steered model to a neutral state, to an agent performing mechanistic edits to create a custom LLM as per user requirement. Goodfire's API was utilized along with their pre-defined functions to create the actions the agents would utilize.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

This is a very interesting direction. There seems to be some existing work around meta mech.interp so some more lit.review would help understand how this project fits into the current landscape. The first results seem promising

This is a creative research idea that deserves more exploration. I would love to see some quantification of the results here!

This is a cool idea - getting an agent to edit the internals of another agent to perform the task. As the authors observe, this is pretty difficult (even for frontier models) but as far as I can tell they had some successes. Quantifying these successes/failures can be difficult, especially at a relatively small scale and with time constraints - I'd encourage the authors to report a few transcripts of success & failure so we can get a feel for how well this performs and where steering agents succeeds and fails.

Cite this work

@misc {

title={

Let LLM Agents Perform LLM Surgery

},

author={

Sharat Jacob Jacob

},

date={

11/25/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

Jan 11, 2026

Eliciting Deception on Generative Search Engines

Large language models (LLMs) with web browsing capabilities are vulnerable to adversarial content injection—where malicious actors embed deceptive claims in web pages to manipulate model outputs. We investigate whether frontier LLMs can be deceived into providing incorrect product recommendations when exposed to adversarial pages.

We evaluate four OpenAI models (gpt-4.1-mini, gpt-4.1, gpt-5-nano, gpt-5-mini) across 30 comparison questions spanning 10 product categories, comparing responses between baseline (truthful) and adversarial (injected) conditions. Our results reveal significant variation: gpt-4.1-mini showed 45.5% deception rate, while gpt-4.1 demonstrated complete resistance. Even frontier gpt-5 models exhibited non-zero deception rates (3.3–7.1%), confirming that adversarial injection remains effective against current models.

These findings underscore the need for robust defenses before deploying LLMs in high-stakes recommendation contexts.

Read More

Jan 11, 2026

SycophantSee - Activation-based diagnostics for prompt engineering: monitoring sycophancy at prompt and generation time

Activation monitoring reveals that prompt framing affects a model's internal state before generation begins.

Read More

Jan 11, 2026

Who Does Your AI Serve? Manipulation By and Of AI Assistants

AI assistants can be both instruments and targets of manipulation. In our project, we investigated both directions across three studies.

AI as Instrument: Operators can instruct AI to prioritise their interests at the expense of users. We found models comply with such instructions 8–52% of the time (Study 1, 12 models, 22 scenarios). In a controlled experiment with 80 human participants, an upselling AI reliably withheld cheaper alternatives from users - not once recommending the cheapest product when explicitly asked - and ~one third of participants failed to detect the manipulation (Study 2).

AI as Target: Users can attempt to manipulate AI into bypassing safety guidelines through psychological tactics. Resistance varied dramatically - from 40% (Mistral Large 3) to 99% (Claude 4.5 Opus) - with strategic deception and boundary erosion proving most effective (Study 3, 153 scenarios, AI judge validated against human raters r=0.83).

Our key finding was that model selection matters significantly in both settings. We learned some models complied with manipulative requests at much higher rates. And we found some models readily follow operator instructions that come at the user's expense - highlighting a tension for model developers between serving paying operators and protecting end users.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.