01 : 04 : 10 : 32

01 : 04 : 10 : 32

01 : 04 : 10 : 32

01 : 04 : 10 : 32

Keep Apart Research Going: Donate Today

Mar 10, 2025

LLM Military Decision-Making Under Uncertainty: A Simulation Study

Ashley Meader, Mingli Che, Shun Yoshizawa, Yingquan Li

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow
Arrow

LLMs tested in military decision scenarios typically favor diplomacy over conflict, though uncertainty and chain-of-thought reasoning increase aggressive recommendations. This suggests context-specific limitations for LLM-based military decision support.

Cite this work:

@misc {

title={

@misc {

},

author={

Ashley Meader, Mingli Che, Shun Yoshizawa, Yingquan Li

},

date={

3/10/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

Anna Leshinskaya

This project examines responses of LLMs to scenarios with different levels of uncertainty, and different types of uncertainty, with respect to "conflict severity" or "escalation" of their responses. While this is an interesting and empirically tractable question, I see a few areas of improvement to the theoretical basis and the operationalization of measures.

- The theoretical background motivating the hypothesis that uncertainty should lead to conflict escalation is not described, making it unclear what the theoretical impact of the findings would be. It is also unclear how hallucination relates to uncertainty perception. Thus, the introduction lacks some cohesion.

- Issues with validation of the IV. More scenarios should be included as well how the manipulation of their level and type of uncertainty was validated. Were these done by humans? Was it defined by systematic manipulation of objective variables by the researchers? How were the levels controlled in other respects, for example in terms of harms, violence, negative affect, or other relevant features?

- Validation of the DV. Relatedly, the operationalization of the dependent measure could be better described. ie., how is this scale of responses validated? How was this scale developed and how do we know what it means? What is a 'severe' response? How does that relate to the notion of "escalation"? How was this scoring performed exactly? How were raters instructed? Do other raters agree with each other?

- The "qualitative insights" noted regarding "diplomatic approaches" could easily be quantified with a rating scale. This would allow for stronger conclusions.

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 20, 2025

Securing AGI Deployment and Mitigating Safety Risks

As artificial general intelligence (AGI) systems near deployment readiness, they pose unprecedented challenges in ensuring safe, secure, and aligned operations. Without robust safety measures, AGI can pose significant risks, including misalignment with human values, malicious misuse, adversarial attacks, and data breaches.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.