Oct 27, 2024

Mapping Intent: Documenting Policy Adherence with Ontology Extraction

Alejandra de Brunner, Mia Hopman, Jack Wittmayer

Details

Details

Arrow
Arrow
Arrow

Summary

This project addresses the AI policy challenge of governing agentic systems by making their decision-making processes more accessible. Our solution utilizes an adaptive policy ontology integrated into a chatbot to clearly visualize and analyze its decision-making process. By creating explicit mappings between user inputs, policy rules, and risk levels, our system enables better governance of AI agents by making their reasoning traceable and adjustable. This approach facilitates continuous policy refinement and could aid in detecting and mitigating harmful outcomes. Our results demonstrate this with the example of “tricking” an agent into giving violent advice by caveating the request saying it is for a “video game”. Indeed, the ontology clearly shows where the policy falls short. This approach could be scaled to provide more interpretable documentation of AI chatbot conversations, which policy advisers could directly access to inform their specifications.

Cite this work:

@misc {

title={

Mapping Intent: Documenting Policy Adherence with Ontology Extraction

},

author={

Alejandra de Brunner, Mia Hopman, Jack Wittmayer

},

date={

10/27/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Review

Review

Arrow
Arrow
Arrow

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

No reviews are available yet

Mar 24, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Mar 24, 2025

jaime project Title

bbb

Read More

Mar 25, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.