Math Speaks All Languages: Enhancing LLM Problem-Solving Across Multilingual Contexts

Maksim Kostritsya, Kseniia Kuvshinova, Rauf Parchiev, Konstantin Polev

Large language models (LLMs) have shown significant adaptability in tackling various human issues; however, their efficacy in resolving mathematical problems remains inadequate. Recent research has identified steering vectors — hidden attributes that can guide the actions and outputs of LLMs. Nonetheless, the exploration of universal vectors that can consistently affect model responses across different languages is still limited. This project aims to confront two primary challenges in contemporary LLM research by utilizing the Goodfire API to examine whether common latent features can improve mathematical problem-solving capabilities, regardless of the language employed.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

Mateusz Dziemian

Quite surprising results! Wasn’t expecting the model to have features which it doesn’t activate enough during inference that could boost performance. The results are very intriguing and warrant a further study to get a better understanding on the trade-offs for such features and if they just improve maths performance or other domains too.

Simon Lermen

It seems strange to use Google Translate or Mistral for translation when there are much better options available. This is especially problematic for challenging math problems. There’s also an inconsistency in Figure 1, where the numbers add up to 101 despite stating that there are 100 problems. French translations worked much worse, and I’m afraid the translations might not have been accurate. The text didn’t clarify it fully, but it seems they used Mistral for French and Google Translate for Russian. In general, the finding is interesting: they ran a math benchmark, used a contrastive method to find differences between correct and incorrect math answers, and checked if these differences transferred between languages—and they do. This provides evidence that the vector truly captures some sense of mathematical accuracy. That being said, they only evaluated the steering vector on samples where it was incorrect without steering. While this fixes some outcomes, it’s possible this also breaks previously correct responses. In French, it only corrected 2 out of 21, and I’d guess that some false answers might arise just from resampling. They also applied it to only 21 out of 77 false samples. I would also find it more interesting to take the correctness vector for a language in which the model performed better. Using a control feature and validating on all math problems could be beneficial too. You’d expect better results if you resampled on false outputs, so it would be interesting to see what happens if you steer for an unrelated feature.

Alana Xiang

This is creative paper which finds a new domain on which SAE features generalize well (across languages in grade school math).

The surprising finding that the French steering vectors had a larger impact on English and Russian performance than French performance warrants further inquiry. I think this paper could've significantly improved on novelty if it pursued this direction.

Given more time, I would also love to see the authors inspect whether the features they found generalize beyond GSM8K.

Good work!

Cite this work

@misc {

title={

@misc {

},

author={

Maksim Kostritsya, Kseniia Kuvshinova, Rauf Parchiev, Konstantin Polev

},

date={

11/25/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

Mar 31, 2025

Model Models: Simulating a Trusted Monitor

We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.