Morph: AI Safety Education Adaptable to (Almost) Anyone

Shafira Noh, Wan Aimran

🏆 Education Track Prize

One-liner: Morph is the ultimate operation stack for AI safety education—combining dynamic localization, policy simulations, and ecosystem tools to turn abstract risks into actionable, culturally relevant solutions for learners worldwide.

AI safety education struggles with cultural homogeneity, abstract technical content, and unclear learning and post-learning pathways, alienating global audiences. We address these gaps with an integrated platform combining culturally adaptive content (e.g. policy simulations), learning + career pathway mapper, and tools ecosystem to democratize AI safety education.

Our MVP features a dynamic localization that tailors case studies, risk scenarios, and policy examples to users’ cultural and regional contexts (e.g., healthcare AI governance in Southeast Asia vs. the EU). This engine adjusts references, and frameworks to align with local values. We integrate transformer-based localization, causal inference for policy outcomes, and graph-based matching, providing a scalable framework for inclusive AI safety education. This approach bridges theory and practice, ensuring solutions reflect the diversity of societies they aim to protect. In future works, we map out the partnership we’re currently establishing to use Morph beyond this hackathon.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

Mateusz Jurewicz

Very nice template project! I think it looks at an interesting research area (an LLM’s tendency to produce human-seeming responses) and makes reasonable effort to investigate it within the time constraints of a hackathon. I think some ways to further improve the paper itself could be to clearly definite the term “anthropomorphic” in the introduction (within the context of the presented work), draw more on the existing literature on the subject (e.g. “Anthropomorphic response: Understanding interactions between humans and artificial intelligence agents” by Kim, 2023) and expanding the discussion section. Love that the project includes a nice, freely available github repo and would be excited to see the dataset expanded, perhaps by providing further sub-categories of different aspects of the generated text's anthropomorphism or a rating on an ordinal scale.

Esben Kran

Really cool project and excited to see continued work in this direction! It's a clear improvement over Park et al. (2024) in terms of getting uniform elicitation across dark pattern categories compared to the ShareGPT90k dataset. Interestingly, we seem to replicate the anthropomorphism results with Claude from our short experiments in https://www.apartresearch.com/project/anthroprobe. It would have been interesting to see the correlation with human expert coders (read; the researchers) and spot any annotation mistakes given the difference in annotation adherence. I can see a bunch of great directions to take this benchmark. Great work.

Cite this work

@misc {

title={

@misc {

},

author={

Shafira Noh, Wan Aimran

},

date={

3/10/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

Mar 31, 2025

Model Models: Simulating a Trusted Monitor

We offer initial investigations into whether the untrusted model can 'simulate' the trusted monitor: is U able to successfully guess what suspicion score T will assign in the APPS setting? We also offer a clean, modular codebase which we hope can be used to streamline future research into this question.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

May 20, 2025

EscalAtion: Assessing Multi-Agent Risks in Military Contexts

Our project investigates the potential risks and implications of integrating multiple autonomous AI agents within national defense strategies, exploring whether these agents tend to escalate or deescalate conflict situations. Through a simulation that models real-world international relations scenarios, our preliminary results indicate that AI models exhibit a tendency to escalate conflicts, posing a significant threat to maintaining peace and preventing uncontrollable military confrontations. The experiment and subsequent evaluations are designed to reflect established international relations theories and frameworks, aiming to understand the implications of autonomous decision-making in military contexts comprehensively and unbiasedly.

Read More

Apr 28, 2025

The Early Economic Impacts of Transformative AI: A Focus on Temporal Coherence

We investigate the economic potential of Transformative AI, focusing on "temporal coherence"—the ability to maintain goal-directed behavior over time—as a critical, yet underexplored, factor in task automation. We argue that temporal coherence represents a significant bottleneck distinct from computational complexity. Using a Large Language Model to estimate the 'effective time' (a proxy for temporal coherence) needed for humans to complete remote O*NET tasks, the study reveals a non-linear link between AI coherence and automation potential. A key finding is that an 8-hour coherence capability could potentially automate around 80-84\% of the analyzed remote tasks.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.