00:00:00:00

00:00:00:00

00:00:00:00

00:00:00:00

Keep Apart Research Going: Donate Today

Oct 27, 2024

Policy Analysis: AI and Sustainability: Climate Impact Monitoring

Parikirt Oggu & Shawn Reginauld

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow
Arrow

Organizations are responsible for reporting two emission metrics: direct and indirect

emissions. Reporting direct emissions is fairly standard given activity related to the

generation of such emissions typically being performed within a controlled environment

and on-site, thus making it easier to account for all of the activities that contribute to

such emissions. However, indirect emissions stem from activities such as energy usage

(relying on national grid estimates) and operations within a value chain that make

quantifying such values difficult. Thus, the subjectivity involved with reporting indirect

emissions and often relying on industry estimates to report such values, can

unintentionally report erroneous estimates that misguide our perception and subsequent

action in combating climate change. Leveraging an artificial intelligence (AI) platform

within climate monitoring is critical towards evaluating the specific contributions of

operations within enterprise resource planning (ERP) and supply chain operations,

which can provide an accurate pulse on the total emissions while increasing

transparency amongst all organizations with regards to reporting behavior, to help

shape sustainable practices to combat climate change.

Cite this work:

@misc {

title={

@misc {

},

author={

Parikirt Oggu & Shawn Reginauld

},

date={

10/27/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 20, 2025

Securing AGI Deployment and Mitigating Safety Risks

As artificial general intelligence (AGI) systems near deployment readiness, they pose unprecedented challenges in ensuring safe, secure, and aligned operations. Without robust safety measures, AGI can pose significant risks, including misalignment with human values, malicious misuse, adversarial attacks, and data breaches.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.