Recovering Goodfire's SAE feature vectors from their API

Lovkush Agarwal

In this project, we carry out an early trial to see whether Goodfire’s SAE feature vectors can be recovered using the information available from their API.

The strategy tried is: pick a feature of interest, construct a contrastive dataset using Goodfire’s API, then use TransformerLens to get a steering vector for the contrastive dataset, by simply calculating the average difference in the activations in each pair.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

Jaime Raldua

There seems to be existing very similar work and the results from this trial (as acknoledged from the author) is not very succesful. Overall it is an interesting approach that could benefit from more lit.review and further exploration.

Liv Gorton

I was excited to see someone try to do this -- I think how easy it is to reconstruct things like the dictionary vectors has important practical implications. This work would be improved by providing more motivation for the technique of choice, perhaps providing an example or figure that demonstrates why it should work.

Mateusz Dziemian

Interesting study direction, which seems to be very worthwhile for further study. I think that the example that you provide does show some success in this idea. I’m mainly not sure if it makes sense to find the activations in residual stream for features which are monosemantic from an SAE, as the reason for SAEs is that the residual stream itself is polysemantic.

Simon Lermen

Similar to papers such as Recovering the Input and Output Embedding of OpenAI Models (https://arxiv.org/pdf/2403.06634), this paper seeks to recover the SAE vectors from Goodfire's API. The authors admit that they failed at their objective but generally conclude that it should be possible. The method they propose seems reasonable, but I am confused about a key detail: the steering vectors are typically applied to the residual stream, though it’s not entirely clear at which position. The authors want to cache output activations, though those might be in the token space after applying the output embedding? It seems that their method doesn't quite work for some reason. "The steering vector is the average of all these differences, across n and across the dataset." <- This statement might be too strong; it depends on a lot of factors, such as where the steering vector is applied, which datasets are used, and how contrastive pairs are generated.

Cite this work

@misc {

title={

Recovering Goodfire's SAE feature vectors from their API

},

author={

Lovkush Agarwal

},

date={

11/24/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Jul 28, 2025

Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization

In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.

Read More

Jul 28, 2025

AI agentic system epidemiology

As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.

In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.

By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.

We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).

Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.

This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.

We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.

Read More

Jul 28, 2025

Momentum–Point-Perplexity Mechanics in Large Language Models

This work analyzes the hidden states of twenty different open-source transformer language models, ranging from small to medium size and covering five major architectures. The key discovery is that these models show signs of "energy conservation" during inference—meaning a certain measure combining changes in hidden states and token unpredictability stays almost constant as the model processes text.

The authors developed a new framework inspired by physics to jointly analyze how hidden states and prediction confidence evolve over time. They propose that transformers' behavior can be understood as following certain mechanical principles, much like how physical systems follow rules like conservation of energy.

Their experiments show that this conserved quantity varies very little between tokens, especially in untrained (random-weight) models, where it's extremely stable. In pre-trained models, the average energy drops more due to training, but there are larger relative fluctuations from token to token.

They also introduce a new method, based on this framework, for controlling transformer outputs by "steering" the hidden states. This method achieves good results—producing completions rated as higher in semantic quality, while still maintaining the same kind of energy stability.

Overall, the findings suggest that viewing transformer models through the lens of physical mechanics gives new, principled ways to interpret and control their behavior. It also highlights a key difference: random models behave more like balanced systems, while trained models make quicker, more decisive state changes at the cost of less precise energy conservation.

Read More

Jul 28, 2025

Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization

In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.

Read More

Jul 28, 2025

AI agentic system epidemiology

As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.

In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.

By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.

We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).

Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.

This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.

We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.

Read More

Jul 28, 2025

Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization

In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.

Read More

Jul 28, 2025

AI agentic system epidemiology

As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.

In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.

By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.

We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).

Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.

This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.

We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.

Read More

Jul 28, 2025

Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization

In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.

Read More

Jul 28, 2025

AI agentic system epidemiology

As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.

In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.

By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.

We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).

Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.

This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.

We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.