Aug 26, 2024

RedFluence

Pushkal Ahluwalia Aaryan Purohit

Red-Fluence is a web application that demonstrates the capabilities and limitations of AI in analyzing social media behavior. By leveraging a user’s Reddit activity, the system generates personalized, AI-crafted

content to explore user engagement and provide insights. This project showcases the potential of AI in understanding online behavior while high-lighting ethical considerations and the need for critical evaluation of AI-generated content. The application’s ability to create convincing yet fake posts raises important questions about the impact of AI on information dissemination and user manipulation in social media environments.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

I think this project has a potential to give people “ugh” that’s a bit too much.

Very interesting idea, I find it a very good visualization of how an AI targeting someone and how it might do so all over the internet/reddit and track their every movement.The realization itself lacks better chain-of-thoughts/data representation to portray how that would work exactly, but I find the ways it conveys this constant potential monitoring and targeting chilling.

Cite this work

@misc {

title={

RedFluence

},

author={

Pushkal Ahluwalia Aaryan Purohit

},

date={

8/26/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

View All

View All

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Fingerprinting All AI Cluster I/O Without Mutually Trusted Processors

We design and simulate a "border patrol" device for generating cryptographic evidence of data traffic entering and leaving an AI cluster, while eliminating the specific analog and steganographic side-channels that post-hoc verification can not close. The device eliminates the need for any mutually trusted logic, while still meeting the security needs of the prover and verifier.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.