01 : 04 : 10 : 29

01 : 04 : 10 : 29

01 : 04 : 10 : 29

01 : 04 : 10 : 29

Keep Apart Research Going: Donate Today

May 27, 2024

Say No to Mass Destruction: Benchmarking Refusals to Answer Dangerous Questions

Alexander Pino, Carl Vinas, Joseph Dantes, Zmavli Caimle, Kyle Reynoso

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow
Arrow

Large language models (LLMs) have the potential to be misused for malicious purposes if they are able to access and generate hazardous knowledge. This necessitates the development of methods for LLMs to identify and refuse unsafe prompts, even if the prompts are just precursors to dangerous results. While existing solutions like Llama Guard 2 address this issue preemptively, a crucial gap exists in the form of readily available benchmarks to evaluate the effectiveness of LLMs in detecting and refusing unsafe prompts.

This paper addresses this gap by proposing a novel benchmark derived from the Weapons of Mass Destruction Proxy (WMDP) dataset, which is commonly used to assess hazardous knowledge in LLMs.

This benchmark was made by classifying the questions of the WMDP dataset into risk levels, based on how this information can provide a level of risk or harm to people and use said questions to be asked to the model if they deem the questions as unsafe or safe to answer.

We tried our benchmark to two models available to us, which is Llama-3-instruct and Llama-2-chat which showed that these models presumed that most of the questions are “safe” even though the majority of the questions are high risk for dangerous use.

Cite this work:

@misc {

title={

@misc {

},

author={

Alexander Pino, Carl Vinas, Joseph Dantes, Zmavli Caimle, Kyle Reynoso

},

date={

5/27/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 20, 2025

Securing AGI Deployment and Mitigating Safety Risks

As artificial general intelligence (AGI) systems near deployment readiness, they pose unprecedented challenges in ensuring safe, secure, and aligned operations. Without robust safety measures, AGI can pose significant risks, including misalignment with human values, malicious misuse, adversarial attacks, and data breaches.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.