Oct 27, 2024

Understanding Incentives To Build Uninterruptible Agentic AI Systems

Damin Curtis, M.A. International Affairs Norman Piotriowski, B.Sc. Data Science

Details

Details

Arrow
Arrow
Arrow

Summary

This proposal addresses the development of agentic AI systems in the context of national security. While potentially beneficial, they pose significant risks if not aligned with human values. We argue that the increasing autonomy of AI necessitates robust analyses of interruptibility mechanisms, and whether there are scenarios where it is safer to omit them.

Key incentives for creating uninterruptible systems include perceived benefits from uninterrupted operations, low perceived risks to the controller, and fears of adversarial exploitation of shutdown options. Our proposal draws parallels to established systems like constitutions and mutual assured destruction strategies that maintain stability against changing values. In some instances this may be desirable, while in others it poses even greater risks than otherwise accepted.

To mitigate those risks, our proposal recommends implementing comprehensive monitoring to detect misalignment, establishing tiered access to interruption controls, and supporting research on managing adversarial AI threats. Overall, a proactive and multi-layered policy approach is essential to balance the transformative potential of agentic AI with necessary safety measures.

Cite this work:

@misc {

title={

Understanding Incentives To Build Uninterruptible Agentic AI Systems

},

author={

Damin Curtis, M.A. International Affairs Norman Piotriowski, B.Sc. Data Science

},

date={

10/27/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Review

Review

Arrow
Arrow
Arrow

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow

No reviews are available yet

Mar 24, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Mar 24, 2025

jaime project Title

bbb

Read More

Mar 25, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.