Nov 25, 2024

Bias Mitigation in LLM by Steering Features

Akanksha Devkar

To ensure that we create a safe and unbiased path to AGI, we must calibrate the biases in our LLMs. And with this goal in mind, I worked on testing Goodfire SDK and the steering features to mitigate bias in the recently help Apart Research x Goodfire-led hackathon on ‘Reprogramming AI Models’.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

This is an interesting project that applies interpretability to understand the bias that exists in LLMs. I liked the result of nudging resulting in a gender neutral pronoun in the top logits rather than just making a gendered pronoun more or less likely. The figures were well-presented and the paper was clearly written. Overall a nice demonstration of how steering could be used! It could be interesting to explore how this holds up to in context pronouns or if there is a set of features that produces the result regardless of the direction of the bias.

Cite this work

@misc {

title={

Bias Mitigation in LLM by Steering Features

},

author={

Akanksha Devkar

},

date={

11/25/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

View All

View All

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Fingerprinting All AI Cluster I/O Without Mutually Trusted Processors

We design and simulate a "border patrol" device for generating cryptographic evidence of data traffic entering and leaving an AI cluster, while eliminating the specific analog and steganographic side-channels that post-hoc verification can not close. The device eliminates the need for any mutually trusted logic, while still meeting the security needs of the prover and verifier.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.