01 : 04 : 10 : 30

01 : 04 : 10 : 30

01 : 04 : 10 : 30

01 : 04 : 10 : 30

Keep Apart Research Going: Donate Today

Apr 28, 2025

Economic Impact Analysis: The Impact of AI on the Indian IT Sector

Maimuna Zaheer, Alina Plyassulya

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow
Arrow

We studied AI’s impact on India’s IT sector. We modelled a 20% labour shock and proposed upskilling and insurance policies to reduce AI-driven job losses.

Cite this work:

@misc {

title={

@misc {

},

author={

Maimuna Zaheer, Alina Plyassulya

},

date={

4/28/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

Joseph Levine

1. Innovation & Literature Foundation

1. 2.5

2. Good knowledge of the problem.

3. I'd like to see more attention to literature on the policies you assessed. Your assumptions of their efficacy are crucial — so it's helpful to get them in the right ballpark.

4. Especially upskilling. Economists have studied that one to death. Especially in the US but there's also great work in Ethiopia (Girum Abebe) and South Asia.

2. Practical Impact on AI Risk Reduction

1. 3

2. The policy problem is very clearly identified. Honestly, just showing that 20% of jobs in this sector (a not-unreasonable number) is 675,000 jobs will make policymakers sit up and pay attention.

3. It's useful to talk about the high-cost and low-return to unemployment insurance. Jobs displaced by AI don't come back. In labor econ-lingo, those displaced need to turn to new tasks. Which is what up-skilling is for! So: well-chosen policies.

4.

3. Methodological Rigor & Scientific Quality

1. 3

2. I'm not sure I follow the assumptions, and I would love to see the code!

3. It seems that you assume a ±20% to the sector scales both employment and revenue by ±20% (Figs 1 and 2). It's definitely possible for AI to increase/decrease employment by 20%, and the same for revenue, but it's very unlikely that these are correlated! For example, it seems more likely that AI would increase revenues while decreasing headcount!

4. What are the assumptions used for the policy comparison analysis? You mention dummy data (which is very reasonable in a research sprint!). As I mentioned above; it might be helpful to calibrate these assumptions to the estimates on existing upskilling experiments. There's lots of work on the US, but more relevant to your context might be work in Ethiopia and Bangladesh.

Joel Christoph

The paper tackles an important question: how transformative AI might disrupt employment and public finances in India’s IT-BPM sector. It grounds the discussion in publicly available OECD TiVA data. The authors clearly present headline results: a ±20 % labour-input shock translates into roughly ±675 000 jobs and about USD 8.4 billion in tax revenue. Two stylised policy responses (up-skilling vouchers and lay-off insurance) appear affordable relative to the taxes that would otherwise be lost. The write-up is concise, the causal chain is easy to follow, and the inclusion of tentative cost-benefit numbers offers a useful starting point for policy debate.

The analysis, however, remains exploratory. The 20 % shock is imposed exogenously with no justification from adoption curves or task-level automation risk estimates, so results could change materially under different assumptions. Treating employment as a fixed ratio of value added ignores capital deepening and substitution elasticities, while reliance on a single 25 % effective tax rate obscures India’s heterogeneous fiscal structure. The input-output framework is labelled “partial” but not specified, which prevents readers from replicating coefficient adjustments or inspecting sectoral knock-on effects. Literature coverage is thin; only a handful of general reports are cited, omitting recent empirical and theoretical work on AI labour substitution, skill-biased technical change, and AI safety-oriented governance mechanisms. AI safety relevance is indirect: the focus is economic displacement rather than mitigation of catastrophic or misuse risks, and links to alignment or systemic safety concerns are not developed. Finally, the methodology, code, and data cleaning steps are not documented in a repository, which limits transparency.

To strengthen the submission, the authors should (i) justify the shock magnitudes with evidence, (ii) perform sensitivity and scenario analysis, (iii) move toward a dynamic or general-equilibrium model that captures feedback effects, (iv) expand the literature review to situate the work in AI economics and AI safety debates, and (v) publish a reproducible notebook and data appendix. Clarifying how the proposed interventions align with broader AI safety objectives, such as reducing tail-risk incentives or supporting safe-development norms, would also raise the study’s impact.

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 20, 2025

Securing AGI Deployment and Mitigating Safety Risks

As artificial general intelligence (AGI) systems near deployment readiness, they pose unprecedented challenges in ensuring safe, secure, and aligned operations. Without robust safety measures, AGI can pose significant risks, including misalignment with human values, malicious misuse, adversarial attacks, and data breaches.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

Jan 24, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

Jan 20, 2025

AI Risk Management Assurance Network (AIRMAN)

The AI Risk Management Assurance Network (AIRMAN) addresses a critical gap in AI safety: the disconnect between existing AI assurance technologies and standardized safety documentation practices. While the market shows high demand for both quality/conformity tools and observability/monitoring systems, currently used solutions operate in silos, offsetting risks of intellectual property leaks and antitrust action at the expense of risk management robustness and transparency. This fragmentation not only weakens safety practices but also exposes organizations to significant liability risks when operating without clear documentation standards and evidence of reasonable duty of care.

Our solution creates an open-source standards framework that enables collaboration and knowledge-sharing between frontier AI safety teams while protecting intellectual property and addressing antitrust concerns. By operating as an OASIS Open Project, we can provide legal protection for industry cooperation on developing integrated standards for risk management and monitoring.

The AIRMAN is unique in three ways: First, it creates a neutral, dedicated platform where competitors can collaborate on safety standards. Second, it provides technical integration layers that enable interoperability between different types of assurance tools. Third, it offers practical implementation support through templates, training programs, and mentorship systems.

The commercial viability of our solution is evidenced by strong willingness-to-pay across all major stakeholder groups for quality and conformity tools. By reducing duplication of effort in standards development and enabling economies of scale in implementation, we create clear value for participants while advancing the critical goal of AI safety.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.