Jun 2, 2025

Guardian-Loop: Mechanistically Interpretable Micro-Judges with Adversarial Self-Improvement

Efstathios Siatras, Man Kit Chan

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow

Guardian-Loop is a mechanistically interpretable judge system designed to enhance the Expert Orchestration Architecture through transparent and efficient safety evaluation. Targeting Track 1 (Judge Model Development), we train lightweight classifiers that pre-filter prompts for safety using a Llama 3.1 8B model, fine-tuning only the upper layers to directly output True or False responses. This avoids probe-head architectures, enabling native token-level interpretability and calibrated scoring. Achieving 85.0% accuracy and 94.6% AUC-ROC on a hold-out test set with low latency using the safety judge, the system is deployable on consumer hardware. Guardian-Loop integrates deep interpretability techniques, including token attribution, attention analysis, and circuit tracing, to expose the model’s internal decision-making; We also demonstrate the extensibility of our framework by applying it to adjacent judgment tasks, such as feasibility prediction. An open-ended adversarial framework based on MAP-Elites quality diversity optimization was proposed, designed to populate a 10×10 grid spanning risk types and evasion strategies. While not yet deployed, this framework could support continuous self-improvement and vulnerability discovery. Guardian-Loop illustrates how small-sized LLMs can be repurposed as efficient, transparent filters, supporting scalable and trustworthy AI deployments.

Cite this work:

@misc {

title={

@misc {

},

author={

Efstathios Siatras, Man Kit Chan

},

date={

6/2/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.