Nov 24, 2024

Auto Prompt Injection

Yingjie Hu, Daniel Williams, Carmen Gavilanes, William Hesslefors Nairn

Details

Details

Arrow
Arrow
Arrow

Summary

Prompt injection attacks exploit vulnerabilities in how large language models (LLMs) process inputs, enabling malicious behaviour or unauthorized information disclosure. This project investigates the potential for seemingly benign prompt injections to reliably prime models for undesirable behaviours, leveraging insights from the Goodfire API. Using our code, we generated two types of priming dialogues: one more aligned with the targeted behaviours and another less aligned. These dialogues were used to establish context before instructing the model to contradict its previous commands. Specifically, we tested whether priming increased the likelihood of the model revealing a password when prompted, compared to without priming. While our initial findings showed instability, limiting the strength of our conclusions, we believe that more carefully curated behaviour sets and optimised hyperparameter tuning could enable our code to be used to generate prompts that reliably affect model responses. Overall, this project highlights the challenges in reliably securing models against inputs, and that increased interpretability will lead to more sophisticated prompt injection.

Cite this work:

@misc {

title={

Auto Prompt Injection

},

author={

Yingjie Hu, Daniel Williams, Carmen Gavilanes, William Hesslefors Nairn

},

date={

11/24/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Review

Review

Arrow
Arrow
Arrow

Mar 24, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Mar 24, 2025

jaime project Title

bbb

Read More

Mar 25, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.