Nov 24, 2024

Feature Tuning versus Prompting for Ambiguous Questions

Elis Grahn, Axel Ahlqvist, Elliot Gestrin, Hemming Gong

Details

Details

Arrow
Arrow
Arrow

Summary

This study explores feature tuning as a method to improve alignment of large language models (LLMs). We focus on addressing human psychological fallacies reinforced during the LLM training pipeline. Using sparse autoencoders (SAEs) and the Goodfire SDK, we identify and manipulate features in Llama-3.1-70B tied to nuanced reasoning. We compare this to the common method of controlling LLMs through prompting.

Our experiments find that feature tuning and hidden prompts both enhance answer quality on ambiguous questions to a similar degree, with their combination yielding the best results. These findings highlight feature tuning as a promising and practical tool for AI alignment in the short term. Future work should evaluate this approach on larger datasets, compare it with fine-tuning, and explore its resistance to jailbreaking. We make the code available through a Github repository.

Cite this work:

@misc {

title={

Feature Tuning versus Prompting for Ambiguous Questions

},

author={

Elis Grahn, Axel Ahlqvist, Elliot Gestrin, Hemming Gong

},

date={

11/24/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Review

Review

Arrow
Arrow
Arrow

Mar 24, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Mar 24, 2025

jaime project Title

bbb

Read More

Mar 25, 2025

Safe ai

The rapid adoption of AI in critical industries like healthcare and legal services has highlighted the urgent need for robust risk mitigation mechanisms. While domain-specific AI agents offer efficiency, they often lack transparency and accountability, raising concerns about safety, reliability, and compliance. The stakes are high, as AI failures in these sectors can lead to catastrophic outcomes, including loss of life, legal repercussions, and significant financial and reputational damage. Current solutions, such as regulatory frameworks and quality assurance protocols, provide only partial protection against the multifaceted risks associated with AI deployment. This situation underscores the necessity for an innovative approach that combines comprehensive risk assessment with financial safeguards to ensure the responsible and secure implementation of AI technologies across high-stakes industries.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.