Jan 9, 2026
Terrain Gossip - Peer to peer gossip protocol enabling decentralized continuous behaviour benchmarking of large language models.
Aaron Goulden
https://github.com/rng-ops/gossip
Terrain Gossip is a peer-to-peer gossip protocol enabling decentralized, continuous behavioral
benchmarking of large language model (LLM) providers without central coordination.
Nodes maintain local belief fields over provider behavior, exchange cryptographically signed at-
testations via delta synchronization, and apply robust aggregation to tolerate lying or adversarial
sensors. The protocol is designed such that:
• Providers cannot reliably detect when they are being evaluated.
• No single authority controls the “truth” about model behavior.
• The monitoring infrastructure itself is resistant to manipulation, poisoning, and sybil
attacks.
TerrainGossip therefore functions as foundational infrastructure for AI manipulation
defense: a distributed substrate for collecting, propagating, and analyzing behavioral evidence
under adversarial conditions.
Reviewer's Comments
Reviewer's Comments





No reviews are available yet
Cite this work
@misc {
title={
(HckPrj) Terrain Gossip - Peer to peer gossip protocol enabling decentralized continuous behaviour benchmarking of large language models.
},
author={
Aaron Goulden
},
date={
1/9/26
},
organization={Apart Research},
note={Research submission to the research sprint hosted by Apart.},
howpublished={https://apartresearch.com}
}
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Momentum–Point-Perplexity Mechanics in Large Language Models
This work analyzes the hidden states of twenty different open-source transformer language models, ranging from small to medium size and covering five major architectures. The key discovery is that these models show signs of "energy conservation" during inference—meaning a certain measure combining changes in hidden states and token unpredictability stays almost constant as the model processes text.
The authors developed a new framework inspired by physics to jointly analyze how hidden states and prediction confidence evolve over time. They propose that transformers' behavior can be understood as following certain mechanical principles, much like how physical systems follow rules like conservation of energy.
Their experiments show that this conserved quantity varies very little between tokens, especially in untrained (random-weight) models, where it's extremely stable. In pre-trained models, the average energy drops more due to training, but there are larger relative fluctuations from token to token.
They also introduce a new method, based on this framework, for controlling transformer outputs by "steering" the hidden states. This method achieves good results—producing completions rated as higher in semantic quality, while still maintaining the same kind of energy stability.
Overall, the findings suggest that viewing transformer models through the lens of physical mechanics gives new, principled ways to interpret and control their behavior. It also highlights a key difference: random models behave more like balanced systems, while trained models make quicker, more decisive state changes at the cost of less precise energy conservation.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More
Jul 28, 2025
Local Learning Coefficients Predict Developmental Milestones During Group Relative Policy Optimization
In this work, we investigate the emergence of capabilities in reinforcement learning (RL) by framing them as developmental phase transitions. We propose that the individual components of the reward function can serve as direct observables for these transitions, avoiding the need for complex, derived metrics. To test this, we trained a language model on an arithmetic task using Group Relative Policy Optimization (GRPO) and analyzed its learning trajectory with the Local Learning Coefficient (LLC) from Singular Learning Theory. Our findings show a strong qualitative correlation between spikes in the LLC—indicating a phase transition—and significant shifts in the model's behavior, as reflected by changes in specific reward components for correctness and conciseness. This demonstrates a more direct and scalable method for monitoring capability acquisition, offering a valuable proof-of-concept for developmental interpretability and AI safety. To facilitate reproducibility, we make our code available at \url{github.com/ilijalichkovski/apart-physics}.
Read More
Jul 28, 2025
AI agentic system epidemiology
As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge our ability to evaluate and manage systemic risks.
In this work, we adapt classical epidemiological modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI agents.
By solving systems of ODEs describing the systems with physics-informed neural networks (PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of interventions.
We estimate parameters from real-world data (e.g., adversarial success rates, detection latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail, trading, development, customer service, academia, medical, and critical infrastructure AI tools).
Our results demonstrate how agent population dynamics interact with architectural and policy design interventions to stabilize the system.
This framework bridges concepts from dynamical systems and cybersecurity to offer a proactive, quantitative toolbox on AI safety.
We argue that epidemic-style monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning systems for cascading AI agentic failures.
Read More

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events

Sign up to stay updated on the
latest news, research, and events