Apr 28, 2025

The Rate of AI Adoption and Its Implications for Economic Growth and Disparities.

Catarina Badi

Details

Details

Arrow
Arrow
Arrow
Arrow
Arrow

This project examines the economic impacts of AI adoption, focusing on its potential to increase productivity while also widening income inequality and regional disparities. It explores the factors influencing adoption rates across industries and concludes with policy recommendations aimed at mitigating these disparities through targeted AI adoption incentives and workforce upskilling programs.

Cite this work:

@misc {

title={

The Rate of AI Adoption and Its Implications for Economic Growth and Disparities.

},

author={

Catarina Badi

},

date={

4/28/25

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

Joel Christoph

The paper sets out to explain how differing rates of artificial intelligence adoption will shape productivity, inequality, and regional gaps. It extends the Solow growth framework with an automation variable and overlays Rogers diffusion theory, then sketches a logistic adoption process and an aggregate regional production function. The conceptual synthesis is logically organised and the notation is clear. Figures outlining Gini trajectories are helpful.

The contribution is limited by the absence of empirical grounding. All parameters in the models are hypothetical and no real adoption or productivity data are used for calibration. As a result the results section repeats the intuition that faster adoption raises output and widens gaps, but offers no quantification beyond stylised claims. The references list omits key recent papers that estimate industry level adoption curves, intangible capital spillovers, or distributional effects of large language models. The mechanisms that link AI adoption to regional inequality are described qualitatively and remain untested.

AI safety relevance is only implicit. The paper notes that widening disparities could undermine social stability but does not connect its framework to concrete safety levers such as compute governance, labour transition funds for alignment workers, or incentives for safer model deployment. Without tracing pathways from distributional outcomes to tail risk mitigation the impact on the safety agenda is weak.

Technical quality is hindered by the lack of data, code, or sensitivity tests. Several symbols in the equations are introduced without units. The logistic adoption curve is presented but no baseline or comparative static is shown. The Google Drive link mentioned in the appendix is not integrated into the submission so reproducibility is not possible.

Future work would benefit from collecting cross‐industry panel data on AI investment, estimating adoption rates, and embedding those estimates into the model. A calibrated simulation with Monte Carlo uncertainty would allow credible policy experiments. Engaging with current empirical studies and mapping specific safety channels such as funding for red teaming would strengthen both foundation and relevance. ​

Mar 11, 2025

AI Safety Escape Room

The AI Safety Escape Room is an engaging and hands-on AI safety simulation where participants solve real-world AI vulnerabilities through interactive challenges. Instead of learning AI safety through theory, users experience it firsthand – debugging models, detecting adversarial attacks, and refining AI fairness, all within a fun, gamified environment.

Track: Public Education Track

Read More

Mar 10, 2025

Attention Pattern Based Information Flow Visualization Tool

Understanding information flow in transformer-based language models is crucial for mechanistic interpretability. We introduce a visualization tool that extracts and represents attention patterns across model components, revealing how tokens influence each other during processing. Our tool automatically identifies and color-codes functional attention head types based on established taxonomies from recent research on indirect object identification (Wang et al., 2022), factual recall (Chughtai et al., 2024), and factual association retrieval (Geva et al., 2023). This interactive approach enables researchers to trace information propagation through transformer architectures, providing deeper insights into how these models implement reasoning and knowledge retrieval capabilities.

Read More

Mar 10, 2025

LLM Military Decision-Making Under Uncertainty: A Simulation Study

LLMs tested in military decision scenarios typically favor diplomacy over conflict, though uncertainty and chain-of-thought reasoning increase aggressive recommendations. This suggests context-specific limitations for LLM-based military decision support.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.